Community ConneXion - directory, articles, and links to wholistic, alternative, community minded resources for conscious living in Oregon and the Northwest.
Resources for conscious living
Browse
Newsletter
Participate

The Trouble with Tofu
by John D. MacArthur

Soy Phytates Inhibit Zinc Absorption

Soybeans may affect brain function because of their phytic acid content. Phytic acid is an organic acid present in the outer portion of all seeds. Also known as phytates, they block the uptake of essential minerals in the intestinal tract: calcium, magnesium, iron, and especially zinc. According to research cited by the Weston A. Price Foundation, soybeans have very high levels of a form of phytic acid that is particularly difficult to neutralize and which interferes with zinc absorption more completely than with other minerals.

The soy industry acknowledges the problem, noting that: “one-half cup of cooked soybeans contains one mg of zinc. However, zinc is poorly absorbed from soyfoods.” As for iron, “both phytate and soy protein reduce iron absorption so that the iron in soyfoods is generally poorly absorbed.” [36]

Nutritionist Sally Fallon, author of Nourishing Traditions: The Cookbook that Challenges Politically Correct Nutrition and the Diet Dictocrats, says that as early as 1967, researchers testing soy formula found that it caused negative zinc balance in every infant to whom it was given. Even when the diets were additionally supplemented with zinc, there was a strong correlation between phytate content in formula and poor growth. She warns that "a reduced rate of growth is especially serious in the infant as it causes a delay in the accumulation of lipids in the myelin, and hence jeopardizes the development of the brain and nervous system."

Zinc and the Brain

Relatively high levels of zinc are found in the brain, especially the hippocampus. Zinc plays an important role in the transmission of the nerve impulse between brain cells. Deficiency of zinc during pregnancy and lactation has been shown to be related to many congenital abnormalities of the nervous system in offspring. In children, "insufficient levels of zinc have been associated with lowered learning ability, apathy, lethargy, and mental retardation." [37]

The USDA references a study of 372 Chinese school children with very low levels of zinc in their bodies. The children who received zinc supplements had the most improved performance - especially in perception, memory, reasoning, and psychomotor skills such as eye-hand coordination. Three earlier studies with adults also showed that changes in zinc intake affected cognitive function. [38]

New research has identified a specific contingent of neurons, called "zinc-containing" neurons, which are found almost exclusively in the forebrain, where in mammals they have evolved into a "complex and elaborate associational network that interconnects most of the cerebral cortices and limbic structures." This suggests the importance of zinc in the normal and pathological processes of the cerebral cortex. [39] Furthermore, age-related tissue zinc deficiency may contribute to brain cell death in Alzheimer's dementia. [40]

Safe Soy

To produce soy milk, the beans are first soaked in an alkaline solution, then heated to about 115 degrees C in order to remove as much of the trypsin inhibitors as possible. Fallon says this method destroys most, but not all of the anti-nutrients, however it has the "unhappy side effect of so denaturing the proteins that they become very difficult to digest and much reduced in effectiveness." Furthermore, phytates remain in soy milk to block the uptake of essential minerals.

Only a long period of fermentation will significantly reduce the phytate content of soybeans, as well as the trypsin inhibitors that interfere with enzymes and amino acids. Therefore, fermented soy products such as tempeh and miso (not tofu) provide nourishment that is easily assimilated.

Excerpt from “The Trouble With Tofu: Soy and the Brain” by John D. MacArthur. For further Information see Soy Online Service - Weston A. Price Foundation http://www.brain.com/about/article.cfm?id=13500&cat_id=37.

 References

  1. White LR, Petrovich H, Ross GW, Masaki KH, Association of mid-life consumption of tofu with late life cognitive impairment and dementia: the Honolulu-Asia Aging Study. Fifth International Conference on Alzheimer's Disease, #487, 27 July 1996, Osaka, Japan.
  2. White LR, Petrovitch H, Ross GW, Masaki KH, Hardman J, Nelson J, Davis D, Markesbery W, Brain aging and midlife tofu consumption. J Am Coll Nutr 2000 Apr;19(2):242-55.
  3. Doerge and Sheehan, Letter to the FDA, Feb 18, 1999.
  4. Lephart ED, Thompson JM, Setchell KD, Adlercreutz H, Weber KS, Phytoestrogens decrease brain calcium-binding proteins... Brain Res 2000 Mar 17;859(1):123-31.
  5. Soy Infant Formula Could Be Harmful to Infants: Groups Want it Pulled. Nutrition Week, Dec 10, 1999;29(46):1-2.
  6. Cassidy A, Bingham S, Setchell KD, Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 1994 Sep;60(3):333-40.
  7. Setchell KD, Zimmer-Nechemias L, Cai J, Heubi JE, Exposure of infants to phyto-oestrogens from soy-based infant formula. Lancet 1997 Jul 5;350(9070):23-27.
  8. Enig MG, Fallon SA, Tragedy and Hype, The Third International Soy Symposium. Nexus Magazine Vol 7, No 3, April-May 2000.
  9. O'Dell TJ, Kandel ER, Grant SG, Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 1991 Oct 10 353:6344 558-60.
  10. Bell JM, Whitmore WL, Cowdery T, Slotkin TA, Perinatal dietary supplementation with a soy lecithin preparation: effects on development of central catecholaminergic neurotransmitter systems. Brain Res Bull 1986 Aug;17(2):189-95.
  11. Zetterstrom RH, Williams R, Perlmann T, Olson L, Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res 1996 Sep 5;41(1-2):111-20.
  12. Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J, Magnuson MA, Nikodem VM, Dopamine biosynthesis is selectively abolished in substantia nigra... Mol Cell Neurosci 1998 May;11(1-2):36-46.
  13. Baffi JS, Palkovits M, Castillo SO, Mezey E, Nikodem VM, Differential expression of tyrosine hydroxylase in catecholaminergic neurons of neonatal wild-type and Nurr1-deficient mice. Neuroscience 1999;93(2):631-42.
  14. Shepard TH, Soybean goiter. New Eng J Med 1960;262:1099-1103.
  15. Divi RL, Chang HC, Doerge DR, Anti-thyroid isoflavones from soybean: isolation, characterization, and mechanisms of action.Biochem Pharmacol 1997 Nov 15;54(10):1087-96.
  16. Ishizuki Y, Hirooka Y, Murata Y, Togashi K,The effects on the thyroid gland of soybeans administered experimentally in healthy subjects. Nippon Naibunpi Gakkai Zasshi 1991 May 20;67(5):622-29.
  17. Fort P, Moses N, Fasano M, Goldberg T, Lifshitz F, Breast and soy-formula feedings in early infancy and the prevalence of autoimmune thyroid disease in children. J Am Coll Nutr 1990 Apr;9(2):164-67.
  18. Fort P, Lanes R, Dahlem S, Recker B, Weyman-Daum M, Pugliese M, Lifshitz FJ, Breast feeding and insulin-dependent diabetes mellitus in children. Am Coll Nutr 1986;5(5):439-41.
  19. Regulatory Guidance in Other Countries: New Zealand Ministry of Health Position Statement on Soy Formulas (Adobe Acrobat file).
  20. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O'Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ, Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med 1999 Aug 19;341(8):549-55.
  21. Hauser P, McMillin JM, Bhatara VS, Resistance to thyroid hormone: implications for neurodevelopmental research on the effects of thyroid hormone disruptors. Toxicol Ind Health 1998 Jan-Apr;14(1-2):85-101.
  22. Groth E, Benbrook CM, Lutz K, Update: pesticides in children's foods, an analysis of 1998 USDA PDP data on pesticide residues, Consumers Union of U.S., Inc., May, 2000 (Adobe Acrobat file).
  23. Hayes WJ, The toxicity of dieldrin to man. Bull World Health Organ 1959;20:891-92.
  24. Porter WP, Jaeger JW, Carlson IH, Endocrine, immune and behavioral effects of aldicarb (carbamate), atrazine (triazine) and nitrate (fertilizer) mixtures at groundwater concentrations. Toxicol Ind Health 1999 Jan-Mar;15(1-2):133-50.
  25. Watson, Traci, Common herbicide likely causes cancer. USA Today, June 29, 2000.
  26. Nelson L, American Academy of Neurology's 52nd annual meeting in San Diego, CA, April 29-May 6, 2000.
  27. McGraw M, Bishop N, Jameson R, Robinson MJ, O'Hara M, Hewitt CD, Day JP, Aluminium content of milk formulae and intravenous fluids used in infants. Lancet 1986 Jan 18;1(8473):157.
  28. Dabeka RW, McKenzie AD, Lead, cadmium, and fluoride levels in market milk and infant formulas in Canada. J Assoc Off Anal Chem 1987;70(4):754-57.
  29. Silva M, Reynolds EC, Fluoride content of infant formulae in Australia. Aust Dent J 1996 Feb;41(1):37-42.
  30. Pendrys DG, Katz RV, Morse DE, Risk factors for enamel fluorosis in a fluoridated population. Am J Epidemiol 1994 Sep 1;140(5):461-71.
  31. Schettler T, Stein J, Reich F, Valenti M, In Harm's Way: Toxic Threats to Child Development. Greater Boston Physicians for Social Responsibility, May 2000.
  32. Studies Dealing with Fluoride and the Thyroid Gland. See also: Fluoride Controversy in Townsend Letter for Doctors and Patients.
  33. Galetti PM, Joyet, G, Effect of fluorine on thyroidal iodine metabolism in hyperthyroidism. J Clin Endocrinol 1958;18:1102-10.
  34. Bachinskii PP, Gutsalenko OA, Naryzhniuk ND, Sidora VD, Shliakhta AI, Action of the body fluorine of healthy persons and thyroidopathy patients on the function of hypophyseal-thyroid the system. Probl Endokrinol (Mosk) 1985 Nov-Dec;31(6):25-29.
  35. Fluoridation Status of Some Countries, Fluoride: Protected Pollutant or Panacea?
  36. Soy Nutritive Content, United Soybean Board.
  37. Pfeiffer CC, Braverman ER, Zinc, the brain and behavior. Biol Psychiatry 1982 Apr;17(4):513-32.
  38. U.S. Department of Agriculture, Agricultural Research Service, Food & Nutrition Research Briefs, July 1997.
  39. Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB, Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 2000 May;130(5S Suppl):1471S-83S.
  40. Ho LH, Ratnaike RN, Zalewski PD, Involvement of intracellular labile zinc in suppression of DEVD-caspase activity in human neuroblastoma cells. Biochem Biophys Res Commun 2000 Feb 5;268(1):148-54

[top]